
Dynamic Network Slicing for Fog Radio Access
Networks

Almuthanna Nassar, and Yasin Yilmaz, Member, IEEE
Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA

E-mails: {atnassar@mail.usf.edu; yasiny@usf.edu}

Abstract—Fog radio access network (F-RAN) has been recently

proposed to satisfy the quality-of-service (QoS) requirements

of the ultra-reliable-low-latency-communication (URLLC) IoT

applications, hence fog nodes are empowered with computing and

storage resources to independently deliver network functionalities

at the edge of network without referring the users to the cloud.

However, due to their limited resources, fog nodes should utilize

their resources intelligently for low latency IoT applications to

leverage the complementarity with cloud computing. We consider

the problem of sequentially allocating fog node’s limited resources

to various IoT applications with heterogeneous latency needs.

We formulate the problem as a finite-horizon Markov Decision

Process (MDP), and present the optimal solution, known as

the optimal policy, through dynamic programming. The fog

node learns the optimal policy through interaction with the

IoT environment, which enables adaptive resource allocation in

different IoT environments. Comprehensive simulation results for

various IoT environments corroborate the theoretical basis of the

proposed MDP method.

Index Terms—IoT communications, 5G cellular networks,

Low-latency communications, Resource allocation, Markov de-

cision process.

I. INTRODUCTION

There is an ever-growing demand for wireless communica-
tion technologies to cope with the growing number of IoT
devices and the increasing amount of traffic [1], [2]. For
better user satisfaction, cloud radio access network (C-RAN)
architecture is suggested for 5G, in which a powerful cloud
controller with a pool of baseband units (BBU) and a storage
pool supports a large number of distributed remote radio units
(RRU) through high capacity fronthaul links [3]. However,
C-RAN structure places a huge burden on the centralized
cloud controller and its fronthaul, which causes more delay
due to the limited fronthaul capacity and busy cloud servers
in addition to the large transmission delays [4]. The latency
issue in C-RAN becomes critical for IoT applications that
cannot tolerate such delays. And this is why fog radio access
network (F-RAN) is introduced for 5G, where fog nodes (FNs)
are empowered with caching, signal processing and computing
resources to independently deliver network functionalities to
end users at the edge [5]. IoT applications have various
latency requirements. Hence, especially in a heterogeneous
IoT environment, FN must allocate its limited and valuable
resources in a smart way [6]. In this work, we present a novel
framework for resource allocation in F-RAN to guarantee the
efficient utilization of limited FN resources while satisfying
the low-latency requirements of IoT applications [7].

Recently, a good number of works in the literature consid-
ered network slicing to achieve low latency for IoT applica-
tions in F-RAN. A comprehensive study of network slicing in
5G systems is considered in [8], [9]. Radio resource allocation
for different network slices is exploited in [10]–[12] to support
various quality-of-service (QoS) requirements and minimize
the queuing delay for low latency requests, in which network
is logically partitioned into a high-transmission-rate slice for
mobile broadband (MBB) applications, and a low-latency
slice which supports ultra-reliable low-latency communication
(URLLC) applications. However, the network slicing literature
deals with one-shot, i.e., static, resource allocation among
various network slices and layers. In this work, we focus on
the natural next step of static network slicing: dynamically
optimizing the allocated limited resources to FNs to guarantee
their efficient utilization. We compare the performance and
adaptivity of the proposed dynamic network slicing method to
the static network slicing approach from the recent literature.
With the motivation of satisfying the low-latency requirements
of heterogeneous IoT applications through F-RAN, we propose
a novel framework based on finite-horizon Markov Decision
Process (MDP). We also provide extensive simulation re-
sults in various IoT environments of heterogeneous latency
requirements to evaluate the performance and adaptivity of
the proposed dynamic network slicing method and compare
it to the static network slicing approach with various slicing
thresholds.
The remainder of the paper is organized as follows. Section

II introduces the system model. The proposed MDP formula-
tion for the considered resource allocation problem is given
in Section III. Optimal policy and the related algorithm are
discussed in Section IV. Simulation results are presented in
Section V. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider the F-RAN structure shown in Fig. 1, in
which FNs are connected through the fronthaul to the cloud
controller, where a massive computing capability, centralized
baseband units (BBUs) and cloud storage pooling are avail-
able. FNs are equipped with caching capacity, computing and
signal processing capabilities to deliver network functionalities
at the edge. These resources are limited, and therefore need
to be utilized efficiently giving higher priority to low-latency
users. Hence, we define utility to be equal to the priority level
of a user, which is directly proportional to its level of latency

Fig. 1. Fog-RAN System Model. The FN serves heterogeneous latency needs
in IoT environment. Solid red arrows represent local service by FN in the fog
slice to satisfy low-latency requirements, and dashed arrows represent referral
to the cloud slice to save FN’s limited resources.

requirement. An end user attempts to access the network by
sending a request to the nearest FN. The FN checks the priority
level and then takes a decision whether to serve the user locally
at the edge using its own computing and processing resources
or refer it to the cloud. We consider the FN’s computing and
processing capacity is limited to N slots. We assume that the
time required to fill the slots is much shorter than the average
user serving time, and thus consider a single filling period
of slots with no slot becoming available in the meantime.
FNs should be smart to learn how to decide (serve/refer to
the cloud) for each user (i.e., how to allocate its limited
resources), in a way to achieve the conflicting objectives of
maximizing the average total utility of served users over time
and minimizing its idle (i.e., no-service) time.
One approach to deal with this resource allocation problem

is to apply static network slicing [8], [9] based on the user
utility, in which the network is logically partitioned into
two slices [10]–[12], a fog slice handling high-utility IoT
requests of low-latency demand, and cloud slice handling low-
utility users. Hence a network slicing threshold on the user’s
priority level is required. For instance, if we consider ten
different priorities {1, 2, 3, ..., 10} of IoT applications where
10 represents the highest priority user and 1 is for the lowest
priority, then we can define a slicing threshold rule “serve if
priority greater than 5”. However, such a slicing policy is sub-
optimum since FN will always be waiting for a user to satisfy
the threshold, which will increase the idle time. The main
drawback of this policy is that it cannot adapt to the dynamic
IoT environment to achieve the objective. A better solution
for the F-RAN resource allocation problem is to use MDP
techniques which can continuously learn the environment and
adapt the network slicing rule accordingly [13].

III. FINITE-HORIZON MDP FORMULATION

We formulate the F-RAN resource allocation problem in
the form of finite-horizon Markov decision process (MDP).
In finite-horizon MDP, there is a hard constraint on the FN

in terms of the value of time as it must terminate within a
limited time Tf regardless whether the N slots are filled or
not. This means that the MDP will terminate either at the
termination time Tf or before if all slots are filled earlier.
The utility of a user, denoted with u, has the same value as
user’s priority level, e.g., u 2 {1, 2, 3, ..., 10}. We consider that
the FN has N slots of serving resources. The state of FN is
denoted by S 2 {St,n}, where t and n represent the time and
the number of occupied slots, respectively. We start at t = 0
with all slots available, thus the initial state is S0,0. The finite-
horizon MDP has multiple terminal states. All the FN states
{STf ,n : n = 0, 1, ..., N} and {St,N : t = N,N + 1, ..., Tf}
are terminal states. For a request from a user with utility ut,
at time t, if the FN decides to take the action at = serve,
which means to serve the user at the edge, then it will gain
its utility value as a reward rt+1 = ut, and one slot of the
FN’s resources will be occupied. Otherwise, for the action
at = wait, which means to refer the current user to the cloud
and wait for a better future utility, the FN will maintain its
resources but it will get a reward rt+1 = �⌘, where ⌘ is
the penalty of waiting, whose role is to encourage less idle
time. We define the state S of the FN at any time as the
number of available slots at that time, where future state is
independent of past states given the current state, i.e., Markov
state. At every time step t, the FN receives a request from a
user of utility ut, and FN takes an action at 2 {serve, wait}.
Based on its decision, the FN receives an immediate reward
rt+1 2 {ut,�⌘}, and moves to a successor state S0. We define
the return Gt as the total discounted reward received from
time t till the termination time which is limited by Tf , Gt =PT�1

j=0 �jrt+j+1, where � 2 [0, 1] is the discount factor which
represents the importance of future rewards with respect to the
immediate reward, and after termination r = 0. � = 0 ignores
future rewards, whereas � = 1 means that future rewards are
of the same importance as the immediate rewards.
Starting at the initial state S = S0,0, the objective is to

find the optimal decision policy which maximizes the expected
initial return E[G0]. The state-value function V (S0,0), where
V (S) is shown in (1), is equal to the objective function E[G0].
Similarly, we define the action-value function Q(S, a) as the
expected return that can be achieved after taking the action a
at state S, as shown in (2). The expressions in (1) and (2) are
known as the Bellman expectation equations for state value
and action value, respectively [14],

V (S) = E[Gt|S] = E[rt+1 + �V (S0)|S], (1)
Q(S, a) = E[Gt|S, a] = E[rt+1 + �Q(S0, a0)|S, a], (2)

where a0 denotes the successor action at the successor state
S0.

The value of state S0,0 is the expected return considering all
dynamics and episodes, i.e., V (S0,0 = E[G0]. The objective
of the FN is to utilize the N resource slots for high priority
IoT applications in a timely manner. This can be done through
maximizing the value of initial state V (S0.0). To achieve this
objective an optimal decision policy is required, which is
discussed in the following section.

IV. OPTIMAL POLICY

A decision-making policy ⇡ is a way of selecting actions. It
can be defined as the set of probabilities of taking a particular
action given the state, i.e., ⇡ = {P (a|S)} for all possible state-
action pairs. The policy ⇡ is said to be optimal if it maximizes
the value of all states, i.e., ⇡⇤ = argmax

⇡
V⇡(S), 8S. Hence, to

solve the considered MDP problem, the FN needs to find the
optimal policy through finding the optimal state-value function
V ⇤(S) = max

⇡
V⇡(S), which is similar to finding the optimal

action-value function Q⇤(S, a) = max
⇡

Q⇡(S, a) for all state-
action pairs. From (1) and (2), we can write the optimal state-
value function as,

V ⇤(S) = max
a

Q⇤(S, a) = max
a

E[rt+1 + �V ⇤(S0)|S, a]. (3)

Since the goal of maximizing the expected future rewards is
already taken care of by the optimal value of the successor
state, V ⇤(S0) can be taken out of the expectation in (3). Hence,
the optimal policy is given by the best local action at each
state,

a⇤ = argmax
a

E[rt+1|S, a] + �V ⇤(S0|S, a). (4)

This solution approach is known as Dynamic Programming.
In our problem, first the user arrives, then we make a

decision to serve or wait (refer to the cloud), meaning that
the reward u for serving and the reward �⌘ for waiting are
known at the time of decision making. Thus, from (4), the
optimal action at state St,n is given by

a⇤t,n =

(
Serve if u > ht,n,

Wait otherwise,
(5)

where ht,n = �[V ⇤(St+1,n) � V ⇤(St+1,n+1)] � ⌘. Since
the number of states is finite in the finite-horizon case, we
can use the backward induction technique to compute the
optimal thresholds {ht,n} assuming some training data {ut} is
available to learn some key statistics of the IoT environment.
Starting with the terminal states, which have zero value, we
can compute the optimal state values and consequently the
optimal thresholds for all states by moving backwards. Firstly,
note that not all states {St,n} are accessible for all t and n.
Even if one slot is filled at each t, the states with n > t
are not accessible, as shown in Fig. 2. Secondly, note that
there are Tf + 1 terminal states with zero value (Tf � N
from early stopping with T < Tf and N + 1 from T = Tf ,
n = 0, 1, ..., N), which do not require threshold, as shown with
dark gray in Fig. 2. Next, note that for all the non-terminal
states at time Tf � 1, both serve and wait actions result in a
terminal state with zero value, thus the decision is made based
on only the immediate rewards (u vs. �⌘). That is, at those
states the optimal action is always serve, hence the threshold
on u is zero and the state value is E[u], as shown in Fig. 2.
Similarly, for t = Tf�N, ..., Tf�2, there is a number of non-
terminal states for which both actions yield the same future
value, hence have zero threshold and value E[u]. Specifically,
the states {St,n : t = Tf � l, n = 0, ..., N � l, l = 1, ..., N}

Fig. 2. FH state values and thresholds that need to be computed via backward
induction (green diagonal band). Start with the farthest state STf�2,N�1
(checked green box) and traverse backwards the diagonal band until the initial
state S0,0 (see Algorithm 1). The terminal states (dark gray), the trivial states
whose optimal action is always serve (light gray), and the not accessible states
(red dotted) are also shown.

have state value E[u] and threshold 0, as shown with light gray
in Fig. 2. Finally, for the (Tf � N)N remaining states in a
diagonal band, shown with green in Fig. 2, the state values and
the corresponding thresholds need to be computed backwards
starting with the farthest state STf�2,N�1 from the initial state
S0,0. The total reward is u if served, whereas it is �E[u]�⌘ if
waited, giving the threshold hTf�2,N�1 = �E[u]�⌘, as shown
by the checked green box in Fig. 2. Then, its state value is
written as
V (STf�2,N�1) = P (u > hTf�2,N�1)E[u|u > hTf�2,N�1]

+{1� P (u > hTf�2,N�1)}{�E[u]� ⌘},
(6)

where the first and second terms correspond to the serve and
wait actions, respectively. Note that the probability P (u >
hTf�2,N�1) and the expectation E[u|u > hTf�2,N�1] can
be computed through some observations {u} from the IoT
environment. With V (STf�2,N�1) computed, we can now
find the threshold for the two undiscovered neighboring states
above it, namely STf�3,N�2 and STf�3,N�1 using

ht,n = �⌘ + �[V ⇤(St+1,n)� V ⇤(St+1,n+1)], (7)

from (5). Then, using the thresholds the state values are
computed similarly to (6) as follows

V (St,n) = P (u > ht,n){E[u|u > ht,n] + �V (St+1,n+1)}
+{1� P (u > ht,n)}{�V (St+1,n)� ⌘}.

(8)

Algorithm 1 Learning Optimum Policy for FH MDP
1: Select: � 2 [0, 1], ⌘ 2 R;
2: for i = N � 1 : �1 : 0 do

3: for j = Tf � 1 : �1 : i do

4: hj,i = �[V (Sj+1,i)� V (Sj+1,i+1)]� ⌘;
5: Compute a E[u|u > hj,i] and p P (u > hj,i);
6: V (Sj,i) = p{a + �V (Sj+1,i+1)}

+ (1� p){�V (Sj+1,i)� ⌘};
7: end for

8: end for

9: Return {hj,i}.

In the same way, by computing first the threshold and then the
state value via (7) and (8), respectively, the remaining states
in the diagonal band are traversed backwards until the initial

state S0,0. The key statistics P (u > ht,n) and E[u|u > ht,n]
are to be found from the IoT environment. The procedure
for finding the optimal policy is summarized in Algorithm
1, where by default the terminal states have zero value, and
x : �1 : y denotes the decrement by 1 from x to y. For
notational simplicity, the trivial states are also included in the
loops at lines 2 and 3. The range for the loops can be modified
to exclude the trivial states.
Recall that the FN objective is to maximize the expected

total served utility and minimize the expected termination
time. Hence, to compare the performance of dynamic network
slicing provided in Algorithm 1 with the performance of a
threshold-based static network slicing, which does not learn
from the interactions with environment, we define an objective
performance metric R as

R = E
"

MX

m=1

um � ✓(T �M)

#
, (9)

where a served utility is denoted with um, the number of
served IoT requests in an episode is denoted with M , (T�M)
represents the total idle time, and ✓ is a penalty for being idle.

V. SIMULATIONS

We next provide simulation results to compare the perfor-
mance of the FN when implementing the MDP-based method,
given in Algorithm 1, with that when a threshold-based slicing
is employed. We consider that the FN is empowered with
computing and storage resources of five slots, i.e., N = 5.
We evaluate the performances in various IoT environments
with different compositions of latency requirements. Specif-
ically, we consider 10 utility classes with different latency
requirements to exemplify the variety of IoT applications in
an F-RAN setting. By changing the composition of utility
classes, we generate 19 scenarios, 6 of which are summarized
in Table I. Higher percentages of high-utility users make
the IoT environment richer. Denoting an IoT environment of
particular statistics with ', in Table I we show the statistics
of '1, '4, '7, '10, '15, and '19. The last two rows in
Table I show the probability ⇢ of utility being greater than
5, and the expected value of u, respectively. The first 10
rows in the table provide detailed information given by the
probability of each utility value in an IoT environment. In
the considered 19 scenarios, ⇢ increases by 0.05 from 5%
to 95% for '1,'2, ...,'19 respectively. The remaining 13
scenarios have statistics proportional to their ⇢ values. We
started with a general scenario given by '7 for the following
IoT applications: smart farming, smart retail, smart home,
wearables, entertainment, smart grid, smart city, industrial
Internet, autonomous vehicles, and connected health, which
correspond to the utility values 1, 2, ..., 10, respectively.
We consider the objective performance metric given in

(9) to compare the performance of the FN with N = 5
when applying the proposed dynamic programming algorithm
(Algorithm 1) with the threshold-based slicing algorithm. We
consider a finite horizon of Tf = 10, which serves as a strict

TABLE I
UTILITY DISTRIBUTIONS CORRESPONDING TO A VARIETY OF LATENCY
REQUIREMENTS OF IOT APPLICATIONS IN VARIOUS ENVIRONMENTS

'1 '4 '7 '10 '15 '19

P (u = 1) 0.015 0.012 0.01 0.008 0.004 0.001
P (u = 2) 0.073 0.062 0.05 0.038 0.019 0.004
P (u = 3) 0.365 0.308 0.25 0.192 0.096 0.019
P (u = 4) 0.292 0.246 0.2 0.154 0.077 0.015
P (u = 5) 0.205 0.172 0.14 0.108 0.054 0.011
P (u = 6) 0.014 0.057 0.1 0.142 0.214 0.271
P (u = 7) 0.013 0.051 0.09 0.129 0.193 0.244
P (u = 8) 0.011 0.046 0.08 0.114 0.171 0.217
P (u = 9) 0.009 0.034 0.06 0.086 0.129 0.163
P (u = 10) 0.003 0.012 0.02 0.029 0.043 0.055

⇢ = P (u > 5) 5% 20% 35% 50% 75% 95%
E[u] 3.82 4.4 4.97 5.55 6.5 7.27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
IoT Environment

0

5

10

15

20

25

30

35

40

45

Pe
rf

or
m

an
ce

 (R
)

Dynamic Slicing (RL)
Slicing Thld=1
Slicing Thld=2
Slicing Thld=3
Slicing Thld=4
Slicing Thld=5
Slicing Thld=6
Slicing Thld=7
Slicing Thld=8
Slicing Thld=9
Slicing Thld=10

Fig. 3. Performance of FN with N = 5 and Tf = 10 in various IoT
environments when applying Algorithm 1 with ⌘ = 0, � = 1, and the
threshold-based network slicing algorithm with different slicing thresholds.

termination time. Since we already have a time constraint
on the FN which represents the value of time, we consider
⌘ = ✓ = 0. As shown in Fig. 3, the dynamic network slicing
algorithm exhibits the best performance as it adaptively learns
how to balance early termination with higher utilities. It never
terminates too early or too late (T ⇡ 7.6 for all environments),
as opposed to the threshold-based slicing algorithm which is
not adaptive to the environment. Dynamic slicing algorithm
adaptively learns how to achieve the objective for all IoT
environments under a strict termination time constraint.

VI. CONCLUSIONS

We proposed a finite-horizon Markov Decision Process
(MDP) formulation for the resource allocation problem in Fog
RAN for IoT services with heterogeneous latency require-
ments. We provided the optimum solution (decision policy)
for the MDP problem using dynamic programming. Various
IoT environments with different latency compositions were
considered in the simulations to evaluate the performance of
the proposed dynamic network slicing approach. The numer-
ical results corroborated the fact that MDP methods adapt
to the environment by learning the optimum policy from
experience. We showed that the dynamic MDP-based slicing
method always dominates the static threshold-based slicing
method, which does not learn from the environment.

REFERENCES

[1] A. T. Nassar, A. I. Sulyman, and A. Alsanie, “Achievable rf coverage
and system capacity using millimeter wave cellular technologies in 5g
networks,” in Electrical and Computer Engineering (CCECE), 2014
IEEE 27th Canadian Conference on. IEEE, 2014, pp. 1–6.

[2] A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S.
Rappaport, and A. Alsanie, “Radio propagation path loss models for
5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands,”
IEEE Communications Magazine, vol. 52, no. 9, pp. 78–86, 2014.

[3] S.-H. Park, O. Simeone, and S. Shamai, “Joint optimization of cloud and
edge processing for fog radio access networks,” in Information Theory
(ISIT), 2016 IEEE International Symposium on. IEEE, 2016, pp. 315–
319.

[4] W. Wang, V. K. Lau, and M. Peng, “Delay-aware uplink fronthaul
allocation in cloud radio access networks,” IEEE Transactions on
Wireless Communications, vol. 16, no. 7, pp. 4275–4287, 2017.

[5] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling low-latency applications in fog-radio access networks,” IEEE
network, vol. 31, no. 1, pp. 52–58, 2017.

[6] A. Nassar and Y. Yilmaz, “Resource allocation in fog ran for heteroge-
neous iot environments based on reinforcement learning,” in 2019 IEEE
International Conference on Communications (ICC 2019). IEEE, 2019,
pp. 1–6.

[7] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[8] H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, “Network slicing
in fog radio access networks: Issues and challenges,” IEEE Communi-
cations Magazine, vol. 55, no. 12, pp. 110–116, 2017.

[9] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[10] T. Dang and M. Peng, “Delay-aware radio resource allocation opti-
mization for network slicing in fog radio access networks,” in 2018
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2018, pp. 1–6.

[11] L. Tang, X. Zhang, H. Xiang, Y. Sun, and M. Peng, “Joint resource
allocation and caching placement for network slicing in fog radio
access networks,” in 2017 IEEE 18th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC). IEEE,
2017, pp. 1–6.

[12] Y. Sun, M. Peng, S. Mao, and S. Yan, “Hierarchical radio resource
allocation for network slicing in fog radio access networks,” IEEE
Transactions on Vehicular Technology, 2019.

[13] A. Nassar and Y. Yilmaz, “Reinforcement learning for adaptive resource
allocation in fog ran for iot with heterogeneous latency requirements,”
IEEE Access (Early Access), 2019.

[14] R. Sutton, and A. BartoMack, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

